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A Novel Algorithm Based on the
Domain-Decomposition Method
for the Full-Wave Analysis of
3-D Electromagnetic Problems
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Abstract—A novel technique based on the domain-decompo- analysis of multilayered printed circuit structures including
sition method and frequency-domain finite-difference method is  3-D metallizations. The calculation of Sommerfeld integrals in-
presented for the full-wave analysis of three-dimensional electro- volving the dyadic Green’s function in a multilayered substrate

magnetic problems. In this method, the original domain is decom- . . . .
posed into sub-domains, Maxwell’s equations are then solved in IS the bottleneck of this method. As a very flexible algorithm,

each sub-domain independently, and the global solution is achieved @ Wide variety of structures can be handled by the FEM, but
finally by an iterative procedure. It greatly reduces the computa- the mesh generation is a difficult task. Suppression of spurious

tional complexity and the memory requirement compared withthe  mgodes is another challenge with respect to the FEM.
conventional finite-difference method and method of moments, etc. The FDTD and FDFD methods discretize the Maxwell's

To reduce CPU time, some techniques, such as the relaxation itera- fi directl d b i lied t | |
tive algorithm, overlapped domain decomposition, and multimesh equations directly, and can be easily applied 1o solve complex

resolution are also investigated and adopted to accelerate the algo-Problems. For promoting the computational efficiency of these
rithm. The validity of this algorithm is verified by numerical ex- methods, many works have been focused on the improvement

amples, including the analysis of a multilayered aperture-coupled of the absorbing boundary condition, such as the perfectly
pgtch antenna, the scattering charactgrlstlc analy5|s pf conductlng matched layer (PML) and dispersive boundary condition (DBC)
pillars, and the .S-parameters extraction of the air-bridge discon- ) .
tinuity. [6], etc. These mprovements greatly reduced the computational
scale. For electrically large problems, however, these methods

will also exhaust all computer resources.

As a promising technique, the domain-decomposition method
(DDM) [7], [8] is now widely used in solving large problems.
I. INTRODUCTION Different from other methods, the DDM decomposes the orig-

ECENTLY, many investigations were focused on thihal large domain into independent small sub-domains. In each
frequency-dependent characterization and modeling gjjb-domain, the most efficient method can be chosen indepen-

three-dimensional (3-D) electromagnetic (EM) problems. gently to solve Maxwell’s equati.ohs defined on it. This vv.iII'
lot of numerical methods have been presented in literat§Eeatly reduce the scale of the original problem. Moreover, itis
by using a mathematical model of both integral and differejell suited for numerical implementation on parallel computers,
tial equations. Among them, the spectral-domain technig@8d ¢an considerably reduce both memory requirements and
(SDA) [1], the space-domain mixed-potential integral-equatio(ﬁpu time. The traditional investigations on the DDM in the EM
(MPIE) method [2], the finite-element method (FEM) [3], thdield were focused on the solution of Lgplace equations or static
finite-difference time- domain (FDTD) method [4], and th roblems, e.g., the parameter extraction of 3-D very large scale

finite-difference frequency-domain (FDFD) method [5] aréntegration (VLSI) interconnect structures [9], [10]. In recent

some popular methods in the field of computational electr®a's: the DDM has been extended to solve Helmholtz equa-

magnetics. tions, such as the two-dimensional (2-D) scattering problem by

. - . . Strupfel [11] and the Yiret al. [12]. However, there are still
The SDA is very efficient for the analysis of the propagatio . S
characteristics of hybrid integrated transmission lines, such'§¥’ reports on the application of DDM-finite-difference (FD)

finline, microstrip, coplanar waveguides, etc. The fast Fouriét solving Maxwell’'s equations.

transform (FFT) algorithm additionally enhances the efficienc In this paper, the DDM.combined with the FDFD me'thod 'is
of SDA. However, the SDA is a highly structure-depende esented for the analysis of 3-D EM problems. The iterative

method. The MPIE is widely used for the fast and accural or_ithm of the DDM iS_S_tUdiEd’ ar!d the implgmentation .Of
'S wicely u . the virtual boundary condition (VBC) introduced in the DDM is
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B. Domain Decomposition

Although the coefficient matrikS] in (2) is a sparse matrix,
it might be too huge to be operated. For example, assuming a
structure withlength x width X height as2ig X 2Xg X 1.5Xg
(Ao is the wavelength of free space) and creating 20 grids per
Ao, then a sparse matrix of order 288 000 will result, which will
cost nearly 90 MB for only storing it. On the other hand, to
accurately model sharp discontinuities, a very small mesh size

ar B has to be employe(_j, which will greatly enlarge the scale of the
E pf----Fheeeno & above sparse matrix.
> P Consider still the model defined in (1), but now divide the re-
v L E ion € | bi lapped sub-domains, which i
, e gion 2 into m arbitrary nonoverlapped sub-domains, which is
A | A/:Hy illustrated in Fig. 1. Let2,, p = 1, m be one of these sub-do-
E, '";I'}: """ E, E z mains,I'y , = 1, N1, be the interface between two contiguous
! E, sub-domain$?, and{2,, andl’,, = 2, NI" be the part boundary
_p ¥ of 2, coinciding withl". The original problem defined in (1) is
E, X then decomposed int@ small problems, which are defined as
Fig. 2. Yee lattice. follows:
VX Vxu,—ku,=Ff inQ,
relaxation iterative algorithm, overlapped domain decomposi-(P,): { V Xu, X fip X fip, + jku, X i =g, inT,
tion, and multimesh resolution are also studied in Section 1V, Virtual boundary conditon  inT, ,, Vg # p
and the numerical results demonstrated the accelerating effect 3)

compared with the original algorithm.
where 7, is the outward normal fron€2,. The VBC in
Il. BASIC THEORY this equation is a new condition introduced by additional
boundaryI', ,. Through it, each sub-domain can exchange
A. FDFD ) Jra4p ) . . "
information with neighboring sub-domains. The traditional

Consider an arbitrary 3-D structure, as illustrated in Fig. Birichlet—Numan (D-N) alternating method for solving the
Let$2be aboundary open setalid= 92 be the boundary of the | apjace equation only fits for solving static problems, and

regionQ., The problem ) can then be described by followingcannot solve full-wave problems [9], [10]. Després solved this
Maxwell's equations problem in [7] by providing a new VBC in iteration type

VxH=J+iwsE

. — —J _ i _ _ , onl'y ,, Vg #p.
(P): { VXxE=-J, —iwuH, in Q =V X X g X g — R X g 7,

Boundary condition onl’ @)

“n41 ~ ~ 1o+l ~
V xuptt x oy, Xy, + jhuptt xony,

wherew is the frequency and andy. are the permittivity and  zp, jterative algorithm based on this condition is then followed:
permeability of the medium, respectively. For convenience,

rewrite the above equation as follows: Yn>0andp=1,m
). VXV xu—ku=], in 2 ) and
| Vxuxaxa+jhuxn=g  onl VX Vxurtt — kAt =7, inQ,
wherek = w./zi# is the wavenumbe is the outward normal v X uptt X ity X vy, + jhuptt x ity =g, onl’,

vector fromg, u is the electric or magnetic field to be deter- v w77+ x 7 x # + jlunt x A
. .= —. . . r r r r r
mined, and the functiory5andg indicate the sources. Following ~ s
the conventional FDFD steps, the structure is discretized by a = V X g X fiq X fiq = jhug X fig, 0Nl p, Vg 7’5%
Yee-type FD lattice, as shown in Fig. 2, and a matrix equatio (5)

then results by coupling together all the FD equations at the {1€T€%; iS the solution int, at thenth iteration step of the
terior nodes and FD-type boundary equations as follows: problem(F, ). Although this condition is weakly compared with
the D—N condition, it still provides the continuous condition of

[S|e=7 (2) the fields and its first-order derivatives. On the other hand, it
implies the essentiality of wave propagation. Thus, the VBC
where the matrixS] is a sparse matrixp is the unknown vector in (4) ensures the solution on each sub-domain obtained using
that consists of the field components at all nodes, fingl a the above algorithm is the approximate solution of the problem
given vector corresponding to the incident fields. After the fiel”). However, the condition shown in (4) cannot be directly
components at all nodes are obtained by solving (2), the E&ployed in the FD scheme. Consider conjoint sub-domains
property of the structure can then be easily achieved. shown in Fig. 3, and still use the Yee-type grid to discretize the
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Electric Since the VBC is the relationship between the solution of the
(k + 1)th iteration on theith sub-domain and the solution of
thekth iteration on the contiguoygh sub-domain?i(k) can be
written as
(k) =0 —(k—=1)
F=TF 42 il ®, ®)
=4
Magnetic A O wherefi0 is the incident field on théth sub-domain, anfy}, ;]
node is the VBC shown in (4). Hence, the iterative algorithm of (5)
Fig. 3. Virtual boundary under FD equation. can be written in matrix form as
T [4]3%9 41, ©
virtual boundary. Equation (4) can then be expressed in the FD
equation as where
n+1 ; n+1 —(k
/erHy(—;) —JV /erErEm(-;) <I>1( )
=ty 1y = IVirEr B, ) on’ a0 _ | %" (10)
n : n ? p—Lp - .
/erHx(;; + JV N?‘ErEy(-;)l :
Rl S PN R RV/TECTE Y 3
6 . . .
(6a) is the vector of unknowns on all sub-domains for #tle itera-
for the left boundary of sub-domain, and tion. The matrix
prH b+ e B 0 (St Ve, a] o (ST Vool
= N1’Hg(p+1) + j\/ N1‘51‘E:(p+1) onT [A:| [SQ]_I[VL 2] 0 ... [SQ]_I[Vm, 2]
n—+1 ; n+1 ’ ptl.p = . . .
_NTHJ;(],) + I/ N7‘E7’Ey(p) : . . :
= _I“L7’H;L(p+l) + J V I“LTETE;(])+1) [Snl]il[‘/l, rn] [Snl]il[‘/& rn] T 0
(6b) (12)
for the right boundary of sub-domai®,. The virtual boundary s the so-called Jacobi matrix constructed by block matrices, and
is located on the plane on which only tangential electrical-field =0
components exist. It is known that the corresponding tangential 3 i
magnetic-field components on both sides of the virtual boundary [52]—1720
are placed a half mesh step beyond or retard this boundary under fo = . (12)
the Yee-type grid. When employing VBCs (6a) and (6b) di- :
rectly, the algorithm will be divergence due to the error accu- [Sm]—lfi
mulation in phase. To avoid this problem, one efficient mea 9) is a Jacobi iterati loorithm. Let
is to apply one of the VBCs [see (6a) and (6b)] for both of th us, (9) is a Jacobi iterative algorithm. Le
conjoint sub-domains, which means that the virtual boundary [S1]
is located on planei for sub-domairt2, and on plane3 for [S2]
sub-domairi},. In this case, the VBCs for conjoint sub-domains D= . (13)
employed the same field components and avoided the error ac- ' 5]
cumulation in phase. Based on this improvement, one can easily m
combine the DDM with FD method to analyze the EM propertgnd
of complex 3-D structures. 0
. . . . [V1,2] 0
C. Matrix Expression of the Iterative Algorithm
. . L=| M, [Vos © (14)
As we know, the FD equations corresponding to each sub- _
domain can be expressed in a matrix equation as e e e K
(S = 7, ™) [V“"V] [VQ’;] B [V"’—; ml 0
where[S;] is the coefficient matrix for théth sub-domaing®; 0 [Vaul Waul - [Vinal
is the vector for the unknown field components in tie sub- 0 [Va2] -+ [Vin, 2]
domain, andf; has resulted from (3) and (4). U= 0 . (15)
Now define@(k) as the solution of théth iteration on theth Vi me]

sub-domain, anﬁi(k) as the right-hand side of thgh iteration. 0
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Fig. 4. Structure of the air-bridge. k=
g
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Thus, (9) can be rewritten as
MY _ pt [(L +0)3™ 4 b] (16) 25
where -30
—0
f1
—0
b |/ 2 (17)
—0
frn

is the vector for all incident fields. Substituting the { 1)th
solution of thepth sub-domaing = 1, ¢ — 1) into the com-
putation of the(k + 1)th solution of theith sub-domain, the
Gauss—Sediel iteration of (5) can then be obtained as follows:

¢ _pt (L@““*l) +ud™ 4 b) . @8
Compared with Jacobi iteration, it can save more memory anc
converges faster. Equation (18) can be rewritten as

FHY _qa® 4 (19)
where
G=(D-L)y'Uandg=(D—-L)"'h.

I1l. NUMERICAL RESULTS

1 = &rp =

Fig. 4 shows a simple structure of the air-bridge that is ofter? L“vaw
used in a multilayered printed circuit board (PCB). The who(?é:l N
0
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Fig. 5. S-parameters of the structure of the air-bridge shown in Fig. 4.

Top patch (Way, Way)

Substrate ¢, hy

Bottom patch (Wi, W1y)

Substrate g/, hy

slot (A, Aw)

Ground Plane

Feeding Substrate g, hy

microstrip line (W, Ls)

Fig. 6. Structure of the aperture-coupled stacked microstrip antenna
2.2, Wa, = Way, = 3.8 mm, Wy, = Wy, =3.5mm, 4, =
=04 mm W, = 1.55mm, L, = 1.8 mm,hy = 1.0 mm,
hey = 0.5 mm.

domain is decomposed into three sub-domains along the trans
mission-line direction when the DDM is used (the decomposi-
tion is not presented in this figure). Tl§eparameters are plotted

in Fig. 5 and we can find that the results calculated by the DDM
agree very well with the data obtained by the FDTD method
[15].

Fig. 6 shows the structure of a multilayered aperture-coupled g
patch antenna. The structure is decomposed into three and foL 2
sub-domains along the-axis. The results of; are plotted in o 12
Fig. 7 and compared with published data [13]. Although the total ~—
number of unknowns is 685 506, just 7- and 54-MB RAM are
the cost in the calculation, respectively. In this example, some
fine adjustment of the patch antenna’s parameters is made ti
satisfy the Yee-type FD lattice in the DDM—FD method, which

4

-8

-16

-20

—u=— Reference [13]

——FDFD

. | —A~—DDM-FD(3 sub-domains)
| = x= DDM-FD(4 sub-domains)

..........................................................

..........................

results in a comparative big error , as shown in Fig. 7.

The new method can also be easily extended to the analysis ¢
EM scattering by 3-D objects. Fig. 8 shows the magnitude and
phase distribution of the-direction current along patibcd on
the surface of the conducting cube. In this example, Thé,

20 22
Frequency (GHz)

26

Fig. 7. S;. of the patch antenna shown in Fig. 6.

wave incidents along thex-direction, and the side lengthof  of this example are achieved on a PC PIII333/128MRAM. The
the cube satisfiekys = 2.0. The phase distribution in Fig. 8(b) memory and CPU time costs are listed in Table | when the
takes the point a as the reference zero phase point. The resultsber of sub-domains is different. Since the time for solving
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Fig. 9. RCS of the conductive pillar with a rectangular cross section of size
koa X kob = 2.0 x 2.0 and a finite length. in the z-direction. (ako, L = 2.0.
(b) koL = 10.0. (c) ko L = 20.0.

puting time of the DDM with the conventional FDFD method
because although it can save more memory, it cannot efficiently
save CPU time in all cases. For example, for full-wave anal-
ysis of a 3-D structure, the FDFD method can be applied and
then a sparse coefficient matrix with ord&rcan be obtained,
and then the computational effort of the FDFD method is pro-
portional tonN2. Now, equally decompose the original domain
into m sub-domains, and still employ the FDFD method to solve
the EM equations in each sub-domain. The coefficient matrix
[S;] corresponding to each sub-domain has the ordé¥ of.
Since[S;] is still a sparse matrix, the computational effort of itis
known ast N2, As we know, although the computational effort
for solving a sparse matrix equation is cursorily proportional to

9 . : .
(a) Magnitude of the-direction current of patlbed on the surface N7ina ge_neral case, the actual computayonal effort will be in-
creased with the enlargement of the matrix. Here, the constants
7 and£ are used to express this variety. Hence, the total CPU
time spent by the DDM—FD method can be estimated as

Fig. 8.
of the conductive cube. (b) Phase of theirection current of pathbcd on the
surface of the conductive cube.

COMPARISON OFMEMORY A-II\-I’QB(.I{EU ITIME WHEN THE NUMBER OF N2 n 5 2
SuB-DOMAINS IS DIFFERENT (THE STRUCTURE ISSHOWN IN FIG. 8) n-m-£0 <W) “m n O (V%)
Number of | Memory | Iteration | CPU wheren is the total number of iteration steps. Itis distinctive that
sub-domains | _(MB) | steps | time(s) the computational effort of the DDM—FD method is subjected to
; gg:; ; 1932215 the coefficient./m-£ /n. Unfortunately, the number of iteration
3 232 3 1170 stepsn is often times larger tham, thus, the DDM—FD will

cost more time in comparison with the FDFD method in most

cases. From the above estimation, we can find that there are

each sub-domain decreases when the number of sub-domaiisral ways to improve the computational efficiency of the new
increases, the CPU time of the third case is shorter than thatthod as follows:

of the second case. Next, consider a conducting pillar with a
rectangular cross section of sikga x kob = 2.0 x 2.0 and

a finite lengthL in the »-direction. The corresponding bistatic
radar cross sections (RCSs) from such three finite conductin
pillars are shown in Fig. 9 for: (&)L = 2.0; (b) koL = 10.0;
and (¢)ko L. = 20.0, respectively. The whole domain is divide
into five sub-domains for each example.

1) reduction of the iteration steps
2) faster solver for sub-domains;
3) parallel implementation.

ue to the restriction of the computer, parallel computation is
ahardly implemented for us. Thus, here we will try to enhance the
computational efficiency of the DDM-FD method by reducing
the iteration steps and finding a faster solver on each sub-do-
mains. An irregular domain generally can be decomposed into
some regular sub-domains; it then provides us the possibility of
As mentioned above, by decomposing the whole 3-D struchoosing the most efficient and even different faster solvers for
ture into independent sub-domains, the DDM can greatly redudifferent sub-domains. For some special sub-domains, even an-
the computational scale. However, we did not compare the coatytical solutions can be obtained.

IV. ACCELERATEDALGORITHMS
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TABLE 1l TABLE Il
COMPARISON BETWEEN THE RELAXATION FACTOR AND THE ITERATION COMPARISON BETWEEN THENUMBER OF OVERLAPPING LAYERS AND THE
STEPS(THE STRUCTURE ISSHOWN IN FIG. 4) ITERATION STEPS(THE STRUCTURE ISSHOWN IN FIG. 4)
Number of Relaxation Iteration Number of Overlapping | Iteration
sub-domains factor (w) steps sub-domains layers steps
0.1 32 1 54
0.5 10 2 2 17
2 0.7 9 3 6
1.0 54 1 61
1.5 73 3 2 20
0.1 40 3 6
0.5 14
3 0.7 12 0
1.0 61 ! : — : [13] :
—o— Reterence|
LS 83 3-8 --|——3sub-domains
| : —v— Multi-mesh resolution 2 ]
A. Relaxation Iteration Algorithm B N e PRy SR b
To reduce the iteration steps, we can use the following relax-
ation iterative equation instead of (18): g
(k1) _ = () = (k1) (k) £ Y\
&\ H e -1 5 P 22} . : 77N
o, =o; " +wlS] bi"‘z [V}, il®; - [5i]®; - .
j=1 AS e\ S S R\ 1/ AR
- (%) 18 : / é
+ > Ve (0) [ AV
Jj=i+l 21 ] 1 . ) . 1 . \
wherew is the relaxation factor. The final relaxation algorithm 16 18 20 22 2 26
can then be written as Frequency (GHz)
— (k+1) —(¥) . . . .
@ = 5,® +f (21) Fig. 10. S;; calculated by a multimesh resolution method and compared with

a general DDM method.
where
-1 . e .
S =(D —wkl) [(1 —w)D + WU] domain decomposition is nearly ten times faster than that of
f=w(D—-wL)™'b the nonoverlapped domain decomposition. In addition, it is also

andw must satisfy the restrictiod < w < 2 to guarantee the two times faster than relaxation iteration algorithm of nonover-
convergence of the iterative procedure. Table Il shows the {8PPed domain decomposition. Of course, the relaxation itera-
lationship between the iteration steps and the relaxation facti@ @lgorithm can also be applied on the ODDM. If the whole
when the DDM—FD method is used to analyze the patch & omain is decomposed into two sub-domains, the number of
tenna, shown in Fig. 6. From Table II, one can easily find th@€"apping layers is two and the relaxation is chosen to be 0.7,
the relaxed algorithm shows better convergence performan@Bd the number of iteration steps will be reduced to five.
In this examplew = 0.7 is the best choice. Unfortunately, we . .
cannot find the optimalv for different problems theoretically. C. Multimesh Resolution

Since some of the sub-domains may be very simple and reg-
B. Overlapped Domain Decomposition ular, the same equidistance mesh for all the sub-domains is not

If the neighboring sub-domains are partially overlapped wifconomical in both memory and CPU time. Thus, localized
each other, we then call the method an overlapped domain-gE2asi-uniformity grids can be used to discretize sub-domains,
composition method (ODDM). From both theoretical and phygyhlch means a different mesh resolution is adopte_d for dlfferen.t
ical concepts, we can conclude that the overlapped domain §8b-domains. For convenience, the mesh spaces in sub-domains
composition will results in a faster convergence rate because YHEout discontinuity are double of those in sub-domains with
information exchanged between conjunctional sub-domainsdi§continuity, and the meshes are chosen as Yee-type grids. The
more plentiful. Although it is hard to theoretically analyze thétérpolation function
relationship between the convergence rate and the overlapped w(x, y) = a+ bz + cy + day (22)
proportion, one can intuitively conclude that the large over- i .
lapped area will bring a fast convergence rate. In fact, to ovéf- US€d to convert coarse mesh to fine mesh, and it can be
come the drawback of a phase error, we have overlapped fg§/itten in the FD format
conjoint sub-domains with half of the mesh space in our comz, 4)
putation. Hence, the algorithm (5) can still be applied on over- 4 (1+ 252)(1 + yiy)
lapped domain decomposition. Table Il listed the results of = Z w(xi, ¥i) ! iy ; i=1,2 3 4.

Fig. 4 calculated by overlapped domain decomposition. From i=1 4
Table 11, one can find that the convergence rate of overlapped (23)
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Fig. 10illustrates the results obtained by the above method. Thes3]
improved DDM costs only half of the CPU time compared with

the conventional global DDM. [14]

V. CONCLUSION [15]

In this paper, the DDM combined with the FDFD method has
been presented for the full-wave analysis of 3-D EM problems.
By using this method, we need not face the whole problem di-
rectly, but rather face some coupled sub-domains. Since th
sub-domains can be divided in any possible form, it provides
possibility of applying a different efficient algorithm for a dif-
ferent sub-domain; e.g., even the analytic method can be u
in a simple sub-domain for a complex problem. Examples, i
cluding the extraction of thg-parameters of an air-bridge struc
ture, the analysis of patch antennas, and the scattering anal
of 3-D conductive pillars have been presented. All numerical
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procedure.
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