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Abstract—A novel technique based on the domain-decompo-
sition method and frequency-domain finite-difference method is
presented for the full-wave analysis of three-dimensional electro-
magnetic problems. In this method, the original domain is decom-
posed into sub-domains, Maxwell’s equations are then solved in
each sub-domain independently, and the global solution is achieved
finally by an iterative procedure. It greatly reduces the computa-
tional complexity and the memory requirement compared with the
conventional finite-difference method and method of moments, etc.
To reduce CPU time, some techniques, such as the relaxation itera-
tive algorithm, overlapped domain decomposition, and multimesh
resolution are also investigated and adopted to accelerate the algo-
rithm. The validity of this algorithm is verified by numerical ex-
amples, including the analysis of a multilayered aperture-coupled
patch antenna, the scattering characteristic analysis of conducting
pillars, and the -parameters extraction of the air-bridge discon-
tinuity.

Index Terms—Domain decomposition, FDFD, full-wave
analysis.

I. INTRODUCTION

RECENTLY, many investigations were focused on the
frequency-dependent characterization and modeling of

three-dimensional (3-D) electromagnetic (EM) problems. A
lot of numerical methods have been presented in literature
by using a mathematical model of both integral and differen-
tial equations. Among them, the spectral-domain technique
(SDA) [1], the space-domain mixed-potential integral-equation
(MPIE) method [2], the finite-element method (FEM) [3], the
finite-difference time- domain (FDTD) method [4], and the
finite-difference frequency-domain (FDFD) method [5] are
some popular methods in the field of computational electro-
magnetics.

The SDA is very efficient for the analysis of the propagation
characteristics of hybrid integrated transmission lines, such as
finline, microstrip, coplanar waveguides, etc. The fast Fourier
transform (FFT) algorithm additionally enhances the efficiency
of SDA. However, the SDA is a highly structure-dependent
method. The MPIE is widely used for the fast and accurate
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analysis of multilayered printed circuit structures including
3-D metallizations. The calculation of Sommerfeld integrals in-
volving the dyadic Green’s function in a multilayered substrate
is the bottleneck of this method. As a very flexible algorithm,
a wide variety of structures can be handled by the FEM, but
the mesh generation is a difficult task. Suppression of spurious
modes is another challenge with respect to the FEM.

The FDTD and FDFD methods discretize the Maxwell’s
equations directly, and can be easily applied to solve complex
problems. For promoting the computational efficiency of these
methods, many works have been focused on the improvement
of the absorbing boundary condition, such as the perfectly
matched layer (PML) and dispersive boundary condition (DBC)
[6], etc. These improvements greatly reduced the computational
scale. For electrically large problems, however, these methods
will also exhaust all computer resources.

As a promising technique, the domain-decomposition method
(DDM) [7], [8] is now widely used in solving large problems.
Different from other methods, the DDM decomposes the orig-
inal large domain into independent small sub-domains. In each
sub-domain, the most efficient method can be chosen indepen-
dently to solve Maxwell’s equations defined on it. This will
greatly reduce the scale of the original problem. Moreover, it is
well suited for numerical implementation on parallel computers,
and can considerably reduce both memory requirements and
CPU time. The traditional investigations on the DDM in the EM
field were focused on the solution of Laplace equations or static
problems, e.g., the parameter extraction of 3-D very large scale
integration (VLSI) interconnect structures [9], [10]. In recent
years, the DDM has been extended to solve Helmholtz equa-
tions, such as the two-dimensional (2-D) scattering problem by
Strupfel [11] and the Yinet al. [12]. However, there are still
few reports on the application of DDM–finite-difference (FD)
in solving Maxwell’s equations.

In this paper, the DDM combined with the FDFD method is
presented for the analysis of 3-D EM problems. The iterative
algorithm of the DDM is studied, and the implementation of
the virtual boundary condition (VBC) introduced in the DDM is
also discussed in detail under the FD scheme in Section II. Sec-
tion III illustrates some typical examples, including the-pa-
rameter extraction of an aperture-coupled stacked microstrip an-
tenna [13], an air-bridge structure, and the scattering analysis
of 3-D conducting pillars. To promote the computational effi-
ciency of the method, several accelerating algorithms, such as
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Fig. 1. Model of a 3-D structure.

Fig. 2. Yee lattice.

relaxation iterative algorithm, overlapped domain decomposi-
tion, and multimesh resolution are also studied in Section IV,
and the numerical results demonstrated the accelerating effect
compared with the original algorithm.

II. BASIC THEORY

A. FDFD

Consider an arbitrary 3-D structure, as illustrated in Fig. 1.
Let be a boundary open set and be the boundary of the
region . The problem ( ) can then be described by following
Maxwell’s equations

in

Boundary condition on

where is the frequency and and are the permittivity and
permeability of the medium, respectively. For convenience,
rewrite the above equation as follows:

in

on
(1)

where is the wavenumber, is the outward normal
vector from , is the electric or magnetic field to be deter-
mined, and the functionsand indicate the sources. Following
the conventional FDFD steps, the structure is discretized by a
Yee-type FD lattice, as shown in Fig. 2, and a matrix equation
then results by coupling together all the FD equations at the in-
terior nodes and FD-type boundary equations as follows:

(2)

where the matrix is a sparse matrix, is the unknown vector
that consists of the field components at all nodes, andis a
given vector corresponding to the incident fields. After the field
components at all nodes are obtained by solving (2), the EM
property of the structure can then be easily achieved.

B. Domain Decomposition

Although the coefficient matrix in (2) is a sparse matrix,
it might be too huge to be operated. For example, assuming a
structure with as
( is the wavelength of free space) and creating 20 grids per

, then a sparse matrix of order 288 000 will result, which will
cost nearly 90 MB for only storing it. On the other hand, to
accurately model sharp discontinuities, a very small mesh size
has to be employed, which will greatly enlarge the scale of the
above sparse matrix.

Consider still the model defined in (1), but now divide the re-
gion into arbitrary nonoverlapped sub-domains, which is
illustrated in Fig. 1. Let be one of these sub-do-
mains, be the interface between two contiguous
sub-domains and , and be the part boundary
of coinciding with . The original problem defined in (1) is
then decomposed into small problems, which are defined as
follows:

in
in

Virtual boundary condition in
(3)

where is the outward normal from . The VBC in
this equation is a new condition introduced by additional
boundary . Through it, each sub-domain can exchange
information with neighboring sub-domains. The traditional
Dirichlet–Numan (D–N) alternating method for solving the
Laplace equation only fits for solving static problems, and
cannot solve full-wave problems [9], [10]. Desprès solved this
problem in [7] by providing a new VBC in iteration type

on

(4)

An iterative algorithm based on this condition is then followed:

and

and

in

on

on
(5)

where is the solution in at the th iteration step of the
problem . Although this condition is weakly compared with
the D–N condition, it still provides the continuous condition of
the fields and its first-order derivatives. On the other hand, it
implies the essentiality of wave propagation. Thus, the VBC
in (4) ensures the solution on each sub-domain obtained using
the above algorithm is the approximate solution of the problem
( ). However, the condition shown in (4) cannot be directly
employed in the FD scheme. Consider conjoint sub-domains
shown in Fig. 3, and still use the Yee-type grid to discretize the
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Fig. 3. Virtual boundary under FD equation.

virtual boundary. Equation (4) can then be expressed in the FD
equation as

on

(6a)

for the left boundary of sub-domain and

on

(6b)

for the right boundary of sub-domain . The virtual boundary
is located on the plane on which only tangential electrical-field
components exist. It is known that the corresponding tangential
magnetic-field components on both sides of the virtual boundary
are placed a half mesh step beyond or retard this boundary under
the Yee-type grid. When employing VBCs (6a) and (6b) di-
rectly, the algorithm will be divergence due to the error accu-
mulation in phase. To avoid this problem, one efficient means
is to apply one of the VBCs [see (6a) and (6b)] for both of the
conjoint sub-domains, which means that the virtual boundary
is located on plane for sub-domain and on plane for
sub-domain . In this case, the VBCs for conjoint sub-domains
employed the same field components and avoided the error ac-
cumulation in phase. Based on this improvement, one can easily
combine the DDM with FD method to analyze the EM property
of complex 3-D structures.

C. Matrix Expression of the Iterative Algorithm

As we know, the FD equations corresponding to each sub-
domain can be expressed in a matrix equation as

(7)

where is the coefficient matrix for theth sub-domain,
is the vector for the unknown field components in theth sub-
domain, and has resulted from (3) and (4).

Now define as the solution of theth iteration on theth

sub-domain, and as the right-hand side of theth iteration.

Since the VBC is the relationship between the solution of the
( )th iteration on the th sub-domain and the solution of
the th iteration on the contiguousth sub-domain, can be
written as

(8)

where is the incident field on theth sub-domain, and
is the VBC shown in (4). Hence, the iterative algorithm of (5)
can be written in matrix form as

(9)

where

...
(10)

is the vector of unknowns on all sub-domains for theth itera-
tion. The matrix

...
...

.. .
...

(11)

is the so-called Jacobi matrix constructed by block matrices, and

...
(12)

Thus, (9) is a Jacobi iterative algorithm. Let

...
(13)

and

...

(14)

...

(15)
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Fig. 4. Structure of the air-bridge.

Thus, (9) can be rewritten as

(16)

where

...
(17)

is the vector for all incident fields. Substituting the ( )th
solution of the th sub-domain ( ) into the com-
putation of the th solution of the th sub-domain, the
Gauss–Sediel iteration of (5) can then be obtained as follows:

(18)

Compared with Jacobi iteration, it can save more memory and
converges faster. Equation (18) can be rewritten as

(19)

where

and

III. N UMERICAL RESULTS

Fig. 4 shows a simple structure of the air-bridge that is often
used in a multilayered printed circuit board (PCB). The whole
domain is decomposed into three sub-domains along the trans-
mission-line direction when the DDM is used (the decomposi-
tion is not presented in this figure). The-parameters are plotted
in Fig. 5 and we can find that the results calculated by the DDM
agree very well with the data obtained by the FDTD method
[15].

Fig. 6 shows the structure of a multilayered aperture-coupled
patch antenna. The structure is decomposed into three and four
sub-domains along the-axis. The results of are plotted in
Fig. 7 and compared with published data [13]. Although the total
number of unknowns is 685 506, just 7- and 54-MB RAM are
the cost in the calculation, respectively. In this example, some
fine adjustment of the patch antenna’s parameters is made to
satisfy the Yee-type FD lattice in the DDM–FD method, which
results in a comparative big error , as shown in Fig. 7.

The new method can also be easily extended to the analysis of
EM scattering by 3-D objects. Fig. 8 shows the magnitude and
phase distribution of the-direction current along path on
the surface of the conducting cube. In this example, the
wave incidents along the -direction, and the side lengthof
the cube satisfies . The phase distribution in Fig. 8(b)
takes the point a as the reference zero phase point. The results

Fig. 5. S-parameters of the structure of the air-bridge shown in Fig. 4.

Fig. 6. Structure of the aperture-coupled stacked microstrip antenna" =

" = " = 2:2, W = W = 3:8 mm,W = W = 3:5 mm,A =

3:2 mm,A = 0:4 mm,W = 1:55 mm,L = 1:8 mm,h = 1:0 mm,
h = h = 0:5 mm.

Fig. 7. S of the patch antenna shown in Fig. 6.

of this example are achieved on a PC PIII333/128MRAM. The
memory and CPU time costs are listed in Table I when the
number of sub-domains is different. Since the time for solving
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(a)

(b)

Fig. 8. (a) Magnitude of thez-direction current of pathabcd on the surface
of the conductive cube. (b) Phase of thez-direction current of pathabcd on the
surface of the conductive cube.

TABLE I
COMPARISON OFMEMORY AND CPU TIME WHEN THE NUMBER OF

SUB-DOMAINS IS DIFFERENT(THE STRUCTURE ISSHOWN IN FIG. 8)

each sub-domain decreases when the number of sub-domains
increases, the CPU time of the third case is shorter than that
of the second case. Next, consider a conducting pillar with a
rectangular cross section of size and
a finite length in the -direction. The corresponding bistatic
radar cross sections (RCSs) from such three finite conducting
pillars are shown in Fig. 9 for: (a) ; (b) ;
and (c) , respectively. The whole domain is divided
into five sub-domains for each example.

IV. A CCELERATEDALGORITHMS

As mentioned above, by decomposing the whole 3-D struc-
ture into independent sub-domains, the DDM can greatly reduce
the computational scale. However, we did not compare the com-

Fig. 9. RCS of the conductive pillar with a rectangular cross section of size
k a� k b = 2:0� 2:0 and a finite lengthL in thez-direction. (a)k L = 2:0.
(b) k L = 10:0. (c) k L = 20:0.

puting time of the DDM with the conventional FDFD method
because although it can save more memory, it cannot efficiently
save CPU time in all cases. For example, for full-wave anal-
ysis of a 3-D structure, the FDFD method can be applied and
then a sparse coefficient matrix with ordercan be obtained,
and then the computational effort of the FDFD method is pro-
portional to . Now, equally decompose the original domain
into sub-domains, and still employ the FDFD method to solve
the EM equations in each sub-domain. The coefficient matrix

corresponding to each sub-domain has the order of .
Since is still a sparse matrix, the computational effort of it is
known as . As we know, although the computational effort
for solving a sparse matrix equation is cursorily proportional to

in a general case, the actual computational effort will be in-
creased with the enlargement of the matrix. Here, the constants

and are used to express this variety. Hence, the total CPU
time spent by the DDM–FD method can be estimated as

where is the total number of iteration steps. It is distinctive that
the computational effort of the DDM–FD method is subjected to
the coefficient . Unfortunately, the number of iteration
steps is often times larger than , thus, the DDM–FD will
cost more time in comparison with the FDFD method in most
cases. From the above estimation, we can find that there are
several ways to improve the computational efficiency of the new
method as follows:

1) reduction of the iteration steps;
2) faster solver for sub-domains;
3) parallel implementation.
Due to the restriction of the computer, parallel computation is

hardly implemented for us. Thus, here we will try to enhance the
computational efficiency of the DDM–FD method by reducing
the iteration steps and finding a faster solver on each sub-do-
mains. An irregular domain generally can be decomposed into
some regular sub-domains; it then provides us the possibility of
choosing the most efficient and even different faster solvers for
different sub-domains. For some special sub-domains, even an-
alytical solutions can be obtained.
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TABLE II
COMPARISONBETWEEN THERELAXATION FACTOR AND THE ITERATION

STEPS(THE STRUCTURE ISSHOWN IN FIG. 4)

A. Relaxation Iteration Algorithm

To reduce the iteration steps, we can use the following relax-
ation iterative equation instead of (18):

(20)

where is the relaxation factor. The final relaxation algorithm
can then be written as

(21)

where

and must satisfy the restriction to guarantee the
convergence of the iterative procedure. Table II shows the re-
lationship between the iteration steps and the relaxation factor
when the DDM–FD method is used to analyze the patch an-
tenna, shown in Fig. 6. From Table II, one can easily find that
the relaxed algorithm shows better convergence performance.
In this example, is the best choice. Unfortunately, we
cannot find the optimal for different problems theoretically.

B. Overlapped Domain Decomposition

If the neighboring sub-domains are partially overlapped with
each other, we then call the method an overlapped domain-de-
composition method (ODDM). From both theoretical and phys-
ical concepts, we can conclude that the overlapped domain de-
composition will results in a faster convergence rate because the
information exchanged between conjunctional sub-domains is
more plentiful. Although it is hard to theoretically analyze the
relationship between the convergence rate and the overlapped
proportion, one can intuitively conclude that the large over-
lapped area will bring a fast convergence rate. In fact, to over-
come the drawback of a phase error, we have overlapped two
conjoint sub-domains with half of the mesh space in our com-
putation. Hence, the algorithm (5) can still be applied on over-
lapped domain decomposition. Table III listed the results of
Fig. 4 calculated by overlapped domain decomposition. From
Table III, one can find that the convergence rate of overlapped

TABLE III
COMPARISONBETWEEN THENUMBER OF OVERLAPPING LAYERS AND THE

ITERATION STEPS(THE STRUCTURE ISSHOWN IN FIG. 4)

Fig. 10. S calculated by a multimesh resolution method and compared with
a general DDM method.

domain decomposition is nearly ten times faster than that of
the nonoverlapped domain decomposition. In addition, it is also
two times faster than relaxation iteration algorithm of nonover-
lapped domain decomposition. Of course, the relaxation itera-
tion algorithm can also be applied on the ODDM. If the whole
domain is decomposed into two sub-domains, the number of
overlapping layers is two and the relaxation is chosen to be 0.7,
and the number of iteration steps will be reduced to five.

C. Multimesh Resolution

Since some of the sub-domains may be very simple and reg-
ular, the same equidistance mesh for all the sub-domains is not
economical in both memory and CPU time. Thus, localized
quasi-uniformity grids can be used to discretize sub-domains,
which means a different mesh resolution is adopted for different
sub-domains. For convenience, the mesh spaces in sub-domains
without discontinuity are double of those in sub-domains with
discontinuity, and the meshes are chosen as Yee-type grids. The
interpolation function

(22)

is used to convert coarse mesh to fine mesh, and it can be
rewritten in the FD format

(23)
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Fig. 10 illustrates the results obtained by the above method. The
improved DDM costs only half of the CPU time compared with
the conventional global DDM.

V. CONCLUSION

In this paper, the DDM combined with the FDFD method has
been presented for the full-wave analysis of 3-D EM problems.
By using this method, we need not face the whole problem di-
rectly, but rather face some coupled sub-domains. Since these
sub-domains can be divided in any possible form, it provides a
possibility of applying a different efficient algorithm for a dif-
ferent sub-domain; e.g., even the analytic method can be used
in a simple sub-domain for a complex problem. Examples, in-
cluding the extraction of the-parameters of an air-bridge struc-
ture, the analysis of patch antennas, and the scattering analysis
of 3-D conductive pillars have been presented. All numerical re-
sults have demonstrated the validity of the new method. In Sec-
tion IV, some accelerated algorithms have also been discussed
to further improve computational efficiency.

Although the examples that have been presented in this paper
are not very complex, they have still illustrated the advantages
and flexibility of the method. Furthermore, this method is very
suitable for parallel computation by using the Jacobi iterative
procedure.
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